
OpenMP Parallelization and Optimization of
Graph-based Machine Learning Algorithms

Zhaoyi Meng, Alice Koniges, Yun (Helen) He, Samuel Williams,
Thorsten Kurth, Brandon Cook, Jack Deslippe, and Andrea L. Bertozzi

University of California, Los Angeles, US
Lawrence Berkeley National Laboratory, US

mzhy@ucla.edu

aekoniges@lbl.gov

Abstract. We investigate the OpenMP parallelization and optimiza-
tion of two novel data classification algorithms. The new algorithms are
based on graph and PDE solution techniques and provide significant ac-
curacy and performance advantages over traditional data classification
algorithms in serial mode. The methods leverage the Nystrom extension
to calculate eigenvalue/eigenvectors of the graph Laplacian and this is a
self-contained module that can be used in conjunction with other graph-
Laplacian based methods such as spectral clustering. We use performance
tools to collect the hotspots and memory access of the serial codes and
use OpenMP as the parallelization language to parallelize the most time-
consuming parts. Where possible, we also use library routines. We then
optimize the OpenMP implementations and detail the performance on
traditional supercomputer nodes (in our case a Cray XC30), and predict
behavior on emerging testbed systems based on Intel’s Knights Corner
and Landing processors. We show both performance improvement and
strong scaling behavior. A large number of optimization techniques and
analyses are necessary before the algorithm reaches almost ideal scaling.

Keywords: semi-supervised, unsupervised, data, algorithms, OpenMP,
optimization

1 Introduction

We detail the OpenMP parallelization of two new data classification algorithms.
A classification algorithm sorts the data into different classes such that the sim-
ilarity within a class is stronger than that between different classes. This is a
standard problem in machine learning. Recently, novel algorithms have been pro-
posed [1] that are motivated by PDE-based image segmentation methods and
are modified to apply to discrete data sets [4]. Serial results show that these
algorithms improve both accuracy of solution and efficiency of the computation
and can be potentially faster in parallel than various classification algorithms
such as spectral clustering with k-means [6]. In this paper we describe parallel
implementations and optimizations of the new algorithms. We focus on shared

2 Meng, Z., Koniges, A., et al

memory many-core parallelization schemes that will be applicable to next gener-
ation architectures such as the upcoming Intel Knights Landing processor. After
analyzing the computational hotspots, we find that an optimized implementa-
tion of the Nyström eigensolver is the computational challenge. We implement
directive-based OpenMP parallelization on the most time-consuming part and
implement steps of optimizations to speed up and achieve almost ideal perfor-
mance.

The rest of this paper is organized as follows: Section 2 presents the back-
ground of the image classification algorithms and the Nyström extension eigen-
solver. In Section 3 we discuss Math library usage and optimization for the serial
code. We show our OpenMP parallelization strategies and optimization steps in
Section 4. Finally, Section 5 presents some conclusions and future work.

2 Graph-based Classification Algorithms

2.1 Introduction

We approach the classification problem using graph cut ideas. The novel classi-
fication algorithms consider each data point as a node in a weighted graph and
the similarity (weight) between two nodes Zi and Zj is given by formula:

wij = exp(−dis(Zi, Zj)/τ), (1)

where τ is a parameter [5, 6]. The weight matrix is W = {wij}. In this paper,
we use cosine distance since we use the hyperspectral imagery as the test data
set and cosine distance is standard in this field. So

dis(Zi, Zj) =
< Zi, Zj >

||Zi||2||Zj ||2
. (2)

The classification problem is approached using ideas from graph-cuts [2].
Given a weighted undirected graph, the goal is to find the minimum cut (mea-
sured by a summation of the weights along the graph cut) for this problem.
This is equivalent to assigning a scalar or vector value ui to each ith data point
and minimizing the graph total variation (TV)

∑
ij |ui − uj |wij [3]. Instead of

directly solving a graph-TV minimization problem, we transform the graph TV
to graph-based Ginzburg-Laudau (GL) functional [8]:

E(u) = ε < Lsu, u > +
1

ε

∑
i

(W (ui)) (3)

where W (u) is a double well potential, for example W (u) = 1
4 (u2−1)2 in a binary

partitioning and multi-well potential in k dimensions (same as the number of
classes). Ls is the normalized symmetric graph Laplacian which is defined as

L = I − D−
1
2WD−

1
2 , where D is a diagonal matrix with diagonal elements

di =
∑

j∈V w(i, j).

OpenMP - Machine Learning Algorithm 3

In the vanishing ε limit we recover the graph TV functional [7]. Different
fidelity items are added to GL functional for semi-supervised and unsupervised
learning respectively. The GL functional is minimized using the MBO scheme
[10], in which one alternates solving the heat (diffusion) equation for u and
thresholding to maintain distinct class structure. Computation of the entire
graph Laplacian is prohibitive for large data so we use the Nyström extension to
randomly sample the graph and compute a modest number of leading eigenval-
ues and eigenfunctions of the graph Laplacian [9]. By projecting all vectors onto
this sub-eigenspace, the iteration step reduces to a simple coefficient update.

2.2 Semi-supervised and Unsupervised Algorithms

We outline the semi-supervised and the unsupervised algorithms. For the semi-
supervised algorithm, the fidelity (a small amount of “ground truth”) is known
and the rest needs to be classified according to the categories of the fidelity.
For the unsupervised algorithm, there is no prior knowledge of the labels of the
data. We use the Nyström extension algorithm beforehand for both algorithms
to calculate the eigenvalues and eigenvectors as the inputs. In practice, these
two algorithms converge very fast and give accurate classification results.

Semi-supervised Graph MBO Algorithm [10]

1. Input eigenvectors matrix Φ, eigenvalues {λk}Mk=1 and fidelity.
2. Initialize u0, d0 = 0, a0 = ΦT · u0.
3. While ||u

n+1−un||22
||un+1||22

< α = 0.0000001 do
a. Heat equation

1). an+1
k = ank · (1− dt · λk)− dt · dnk

2). y = Φ · an+1

3). dn+1 = ΦT · µ(y − u0),
b. Thresholding

un+1
i = er, r = arg maxj yi

c. Updating a
an+1 = ΦT · un+1

Unsupervised Graph MBO Algorithm [11]

1. Input data matrix f , eigenvector matrix Φ, eigenvalues {λk}Nk=1.
2. Initialize u0, a0 = ΦT · u0

3. While ||u
n+1−un||22
||un+1||22

< α = 0.0000001 do
a. Updating c

cn+1
k =

<f,un+1
k >∑N

i=1 uki

b. Heat equation

1. an+
1
2

k = ank · (1− dt · λk)
2. Calculating matrix P , where Pi,j = ||fi − cj ||22
3. y = Φ · an+

1
2

k − dt · µP

4 Meng, Z., Koniges, A., et al

c. Thresholding
un+1
i = er, r = arg maxj yi

d. Updating a
an+1 = ΦT · un+1

2.3 Nyström Extension Method

In both semi-supervised and unsupervised algorithms, we calculate the leading
eigenvalues and eigenvectors of the graph Laplacian using Nyström method [9]
to accelerate the computation. This is achieved by calculating an eigendecompo-
sition on a smaller system of size M << N and then expanding the results back
up to N dimensions. The computational complexity is almost O(N). We can set
M << N without any significant decrease in the accuracy of the solution.

Suppose Z = {Zk}Nk=1 is the whole set of nodes on the graph. By randomly
selecting a small subset X, we can partition Z as Z = X

⋃
Y , where X and Y

are two disjoint set, X = {Zi}Mi=1 and Y = {Zj}N−Mj=1 and M << N . The weight
matrix W can be written as

W =

[
WXX WXY

WY X WY Y

]
,

where WXX denotes the weights of nodes in set X, WXY denotes the weights
between set X and set Y , WY X = WT

XY and WY Y denotes the weights of nodes
in set Y . It can be shown that the large matrix WY Y can be approximated by
WY Y ≈WY XW

−1
XXWXY , and the error is determined by how many of the rows

of WXY span the rows of WY Y . We only need to compute WXX , WXY = WT
Y X ,

and it requires only (|X| · (|X| + |Y |)) computations versus (|X| + |Y |)2 when
the whole matrix is used. For the data set we use in this paper, M = 100 and
N = 13, 475, 840.

Nyström Extension Algorithm

1. Input a set of features Z = {Zi}Ni=1.
2. Partition the set Z into Z = X ∪ Y , where X consists of M randomly selected elements.
3. Calculate WXX and WXY using formula (1).
4. Calculate dX = WXX1L +WXY 1N−L and dY = WY X1L + (WY XW

−1
XXWXY)1N−L.

5. Calculate sX =
√
dX and sY =

√
dY .

6. Calculate WXX = WXX ./(sXs
T
X) and WXY = WXY ./(sXs

T
Y).

7. Calculate eigendecomposition WXX = BXΓB
T
X (using the SVD).

8. Calculate S = BXΓ
−1/2BT

X and Q = WXX + S(WXYWY X)S.
9. Calculate eigendecomposition Q = AΘAT (using the SVD).

10. Form eigenvector matrix Φ =

[
BXΓ

1/2

WY XBXΓ
−1/2

]
BT

X(AΘ−1/2).

11. Output Φ and {λi}Ni=i,where λk = 1− θk with θk the kth diagonal element of Θ.

OpenMP - Machine Learning Algorithm 5

3 Math Library Usage and Optimizations

All the data are in matrix form and there are intensive linear algebra calculations.
Also, we apply Singular Value Decomposition (SVD) to two small matrices. So,
we make use of the LAPACK (Linear Algebra PACKage) and BLAS (Basic
Linear Algebra Subprograms) libraries in the codes. The LAPACK provides
routines for the SVD and the BLAS provides routines for vector-vector (Level
1), matrix-vector (Level 2) and matrix-matrix (Level 3) operations. BLAS and
LAPACK are also highly vectorized and multithreaded using OpenMP.

We use the Intel Performance Tool VTune Amplifier to analyze the perfor-
mance and find bottlenecks [18]. The hotspots collection shows some compu-
tationally expensive parts are related to calculating the inner product of two
vectors. In the unsupervised graph MBO algorithm, this operation occurs when
calculating the matrix P and takes 84% of the run time. Also, it occurs when
calculating the matrix WXY in the Nyström extension algorithm and takes 90%
of the run time. We optimize this procedure by forming all the vectors into ma-
trices and doing the inner product of two matrices. In this way, we make use of
BLAS3 (matrix-matrix) instead of BLAS1 (vector-vector). The part of calculat-
ing the matrix P in the unsupervised algorithm is 22.5× faster using BLAS3.
This optimization is based on the fact that BLAS1,2 are memory bound and
BLAS 3 is computational bound [12].

4 Parallelization of the Nyström Extension

Parallelization of these two classification algorithms involves a parallel for. It
is critical to further optimize the OpenMP implementation to get nearly ideal
scaling. We detail this process using more complex features of OpenMP such as
SIMD and vectorization. Then we use the uniform sampling and chunk of data
to get the best performance.

We consider the data set, described in more detail in [13], composed of hyper-
spectral video sequences recording the release of chemical plumes at the Dugway
Proving Ground. We use the 329 frames of the video. Each frame is a hyper-
spectral image with dimension 128 × 320 × 129, where 129 is the dimension of
the channel of each pixel. The total number of pixels is 13,475,840. Since we are
dealing with very large data set we choose binary form for smaller storage space
and faster I/O. Our test data is 13.91 GB in binary form and the I/O is 36.8×
faster than the txt format when testing on Cori Phase I.

We conduct our experiments on single nodes of systems at the National
Energy Research Scientific Computing Center (NERSC). Cori Phase I is the
newest supercomputer system at NERSC. The system is a Cray XC based on
the Intel Haswell multi-core processor. Each node has 128 GB of memory and
two 2.3 GHz 16-core Haswell processors. Each core has its own L1 and L2 caches,
with 64 KB (32 KB instruction cache, 32 KB data) and 256 KB, respectively;
there is also a 40-MB shared L3 cache per socket. Peak performance per node
is about 1.2 TFlop/s and peak bandwidth is about 120 GB/s. The resultant

6 Meng, Z., Koniges, A., et al

machine balance of 10 flops per byte strongly motivates the use of BLAS3 like
computations.

4.1 OpenMP Parallelization

Analysis with VTune shows that the most time consuming phase of both two
classification algorithms is construction of WXY in the Nyström extension pro-
cedure. This phase is a good candidate for OpenMP parallelization because each
element of WXY can be computed independently. The procedure of calculating
WXY is shown in Fig. 1. We form the data in a N by d matrix Z. Each row of

Fig. 1. The procedure of calculating WXY :

Z corresponds to a data point and it’s a vector of dimension d. In computation,
we store Z in an array in row major. We randomly select M rows to form the
sampled data set X = {Zi}Mi=1. The other rows form the data set Y = {Zj}N−Mj=1 .
Then we use the nested for-loop to calculate the values of WXY by the formula
(1). We then put the corresponding value in an array which represent the M by
N −M matrix WXY .

Reordering Loops We have tested re-ordering loops as a means to optimize
the algorithm. With analysis, we notice the j-loop is far larger than the i-loop.
There are still two ways to do the parallelization. One way is to parallelize the
j-loop as inner loop and the other way is to parallelize the j-loop as outer loop.
We tried both ways and compared the results.

OpenMP - Machine Learning Algorithm 7

Step A: Parallelizing the inner j-loop

f o r i = 0; i < M ; i+ +
n1 =< Zi, Zi >
#pragma omp p a r a l l e l f o r
f o r j = 1 : N −M

n12 =< Zi, Zj >
n2 =< Zj , Zj >
d = 1− n12/

√
n1 · n2

WXY (i, j) = exp(−d/σ)
end

end

Step B: Parallelizing the outer j-loop

#pragma omp p a r a l l e l f o r
f o r j = 1 : N −M

n2 =< Zj , Zj >
f o r i = 1 : M

n12 =< Zi, Zj >
n1 =< Zi, Zi >
d = 1− n12/

√
n1 · n2

WXY (i, j) = exp(−d/σ)
end

end

The results show that parallelizing the outer j-loop is much faster. The run
time decreases by a factor of 7. This is because on Cori, each core has its own L1
and L2 cache. When parallelizing the outer j-loop, all the Xis can be read and
reside on the L2 of each core and can be used repeatedly. If instead we parallelize
the inner j-loop, there are more reads of the Xi and thus the calculation takes
more time. Parallelizing the outer j loop also means each thread has more work
to do, since the inner i-loop is also part of the j-loop. In this way less overhead
and more load balance can be achieved. While if we parallelize the inner j-loop,
not only each thread has less work and large load imbalance, but also there are
multiple times of thread creation and overhead.

Chunk and Vectorization We further optimize the OpenMP parallelization
using vectorization. First, we notice, the norms of Zis are computed repeatedly
in the i-loop. So, we normalize all the Zis in the previous step, calculating WXX ,
and store all the normalized Zis in a new matrix Xmat. Then we can calculate
the inner product of each Zj and all the Zis (Xmat) all at once. This make use
of BLAS2 instead of the previous BLAS1. Also, we can vectorize the loop when
calculating WXY . This optimization reduce the run time of calculating WXY by
a factor of 3.

Step C: Calculating WXY , normalize and form all Zis to Xmat

#pragma omp for
for j = 1 : N −M

n2 =< Zj , Zj >

nvec = 1− < Xmat, Zj > /
√
n2

#pragma omp simd aligned
for i = 1 : M

WXY (i, j) = exp(−nvec/σ)
end

end

The Nyström extension algorithm is based on a random partition of the
whole dataset Z into two disjoint data sets X and Y , where X = {Zi}Mi=1

8 Meng, Z., Koniges, A., et al

and Y = {Zj}N−Mj=1 and M << N . Assuming we can uniformly partition the
dataset, so that Zis are evenly distributed, we can form chunks of Zjs to matrix
and further optimize this calculation. The procedure is shown in Fig. 2.

Fig. 2. Uniform sampling and dividing Y into chunks and sub-chunks

First, when calculating WXX , we evenly sample Zis and normalized them.
We form the normalized Zis to a matrix Xmat. Then all the data in between
two consecutive Zis are the chunk of Zjs. Since the chunk size is still very large,
we further decompose each Y-chunk into sub-chunks. There are several consid-
erations for choosing the sub-chunk size. If it is too small, we waste potential of
combining expensive operations. If it is too large, the sub-chunk may run out of
lower level cache and needs to be put into the higher cache levels, up to the point
where they spill over into DRAM which may cause a substantial performance
hit. The optimal value depends on the cache hierarchy, their respective sizes,
their latency and so on. For a different architecture, one may consider choosing
another value. We pick the the subchunksize = 64 when running the codes on
Cori Phase I and it can be further optimized.

Then for each sub-chunk, we calculate the Euclidean norm of each row and
store them in a vector n2vec. This calculation can be vectorized since calculating
the norm of each row is independent. We further divide the norms by 1. We
then calculate the matrix multiplication Xmat · Ysubmat using BLAS3 function
DGEMM. The result is a m×subchunksize matrix n12mat. It is the result of all
the inner product of rows in Xmat and rows in Ysubmat. Then we can vectorize
the final calculation of values in WXY .

Step D: Calculating WXY using uniform sampling and chunked Y matrices

#pragma omp for collapse(2)
for ychunk = 0; ychunk < m; ychunk + +

for j = chunkstart; j < chunkstop; j+ = subchunksize
#pragma omp simd aligned
for k = 0; k < subchunksize; k + +

n2vec[k] =< Zj+k, Zj+k >

n2vec[k] = 1/
√
n2vec[k]

end
n12mat =< Xmat, Ysubmatj >
#pragma omp simd aligned

OpenMP - Machine Learning Algorithm 9

for i = 0; i < m; i+ +
for k = 0; k < subchunksize; k + +
d = 1− n12mat[i, k] · n2vec[k]
WXY (i, j + k) = exp(−d/σ)

end
end

end

In this uniform sampling, the chunk size is defined as chunksize = floor(N/M).
When M is not divisible by N , the last chunk is larger than the other chunks.
Also, subchunksizemay not be divisible by chunksize. So the size of the last sub-
chunk in each chunk needs to be adjusted. The procedure of uniform sampling
gives good results as compared to the random sampling and further improves
the performance by a factor of 1.7.

We also consider the effect of thread affinity. We choose the thread affinity
setting as “scatter”, because it uses one hardware thread per core. While if we
use the thread affinity setting to be “compact”, it uses both hardware threads
per physical core, leaving one socket idle, which affects scaling performance.

We examined OpenMP thread scaling on a single node of Cori Phase I. The
run time decrease and scaling results of different steps of optimizing the OpenMP
parallelization are shown in Fig. 3. In Fig. 3 (A), we show the significant speed
up of the Nyström loop part. In Step A, in addition to parallelizing the Nyström
loop, we also use BLAS3 optimization on the graph MBO algorithm. Since we
use BLAS and LAPACK in the serial part of Nyström algorithm and the graph
MBO algorithm, their run time also decrease when using multi-cores. In Fig. 3
(B), almost ideal scaling results are achived. Each Cori Phase 1 node has two
sockets (NUMA domain) and each socket has 16 cores. Although the absolute
performance increases when using more than 16 threads on a single node, NUMA
effect is observed that the scaling slows down due to remote memory access to
a far NUMA domain.

4.2 Arithmetic Intensity and Roofline Model

Arithmetic intensity is the ratio of floating-point operations (FLOP’s) performed
by a given code (or code section) to the amount of data movement (Bytes) that
are required to support those operations. Arithmetic intensity in conjunction
with the Roofline Model [14] can be used to bound kernel performance and
qualify performance in a manner more nuanced than percent-of-peak. Fig. 4
shows the result of using the Roofline Toolkit [15] to characterize the performance
of a Cori Phase I node (full 32 cores). The resultant lines (“ceilings”) are bounds
on performance. Clearly, in order to attain high performance, one must design
algorithms that deliver high arithmetic intensity. In order to characterize the
Nyström loop, we used Intel’s Software Development Emulator Toolkit (SDE)
to record FLOP’s and Intel’s VTune Amplifier to collect data movement when
running on 32 cores of a Cori Phase I node [16, 17]. We can then compare the
results to a theoretical estimate based on the inherent requisite computation and
data movement.

10 Meng, Z., Koniges, A., et al

Fig. 3. (A): The run time of different optimization steps. Step A: parallelizing the inner
j-loop and BLAS3 optimization on Graph MBO. Step B: parallelizing the outer j-loop.
Step C: normalizing and forming all Zis to Xmat. Step D: using uniform sampling and
chunked Y matrices. (B): The scaling results of the OpenMP parallelization of the
Nyström loop. The black line with squares, the red line with circles and the blue line
with triangles show the scaling results of step B, C and D respectively. The pink line
with upside down triangles shows the ideal scaling.

 10

 100

 1000

 10000

 0.01 0.1 10 100

G
FL

O
Ps

 /
se

c

 1

1019.9 GFLOPs/sec (Maximum)

L1 -
 43

35
.3

GB/s

 L2 -
 13

87
.7G

B/s

 L3 -
 94

2.9
 G

B/s

DRAM - 1
07

.5
GB/s

FLOPs/Byte

. Our empirical
result

Fig. 4. Empirical Roofline Toolkit results for a Cori Phase I node. Observe, DRAM
bandwidth constrains performance for a wide range of arithmetic intensities.

As shown in Fig. 1, the memory access has two major components — one
must read data from the matrix Z from DRAM and then write the results in
to a matrix WXY . The size of data matrix Z is N × d, where N = 13, 475, 840
and d = 129 for our test data. As we store the data in double precision, the
total size of the matrix (and hence volume of data read) is 13.907×109 bytes.
In the inner loop, the processor must continually access M rows of the matrix

OpenMP - Machine Learning Algorithm 11

Z. As the resultant volume of data (103,200 bytes) easily fits in cache, we need
only real each Zi once (data movement is well proxies by compulsory cache
misses). The size of the matrix WXY is (N −M)×M , where M = 100. As each
double-precision element is written once, we can bound write data movement as
(N −M)×M × 8 = 10.78× 109 bytes. A similar calculation can be performed
to calculate the requisite number of floating-point operations. In the optimized
code, although there are dot products for < Zj , Zj > coupled with a reciprocal
square root and one exponential per element of WXY , the DGEMM used for
calculating Xmat × Ysubmat should dominate the flop count. The matrix Xmat

is 100 × 129, the matrix Ysubmat is on average 64 × 129, and there are roughly
13, 475, 840/64 = 210560 Ysubmat matrices. Thus, the number of floating-point
operations in the loop is about 210560×2×64×129×100 = 347.68×109 (ignoring
any BLAS2 operations in DGEMM, the dot products, and exponential).

Theoretical Empirical

Bytes Read 13.907×109 17.123×109

Bytes Written 10.781×109 12.256×109

FP operations >347.68×109 385.59×109

Arithmetic Intensity (flop:byte) >14.1 13.12

Table 1. Theoretical estimates and Empirical measurements (using VTune and SDE)
of data memory and floating-point operations for the Nyström loop.

Table 1 presents our theoretical estimates and empirical measurements (using
VTune and SDE) of data memory and floating-point operations for the Nyström
loop. Generally speaking our rough theoretical model slightly underestimated
each quantity. Multiple sockets (each with their own caches) may be required to
read unique bytes, but in reality will access overlapping data due to the realities
of large cache lines and hardware stream prefetchers. In terms of floating-point
operations it is clear DGEMM (the basis for our theoretical model) constitutes
over 90% of the total flop count. Overall, with a run time of about 1.28 seconds,
the optimized code attains about 300GFlop/s of performance and 22GB/s of
DRAM bandwidth at an arithmetic intensity of just over 13 flops per byte. At
such a high arithmetic intensity, Figure 4 suggests DRAM bandwidth will not
be the ultimate limiting factor, but further optimizations for the cache hierarchy
(coupled with NUMA optimizations) may be in order.

5 Conclusion and Future Work

In this paper, we present a parallel implementation of two novel classification
algorithms using OpenMP. We show OpenMP parallel and simd regions in combi-
nation with optimized library routines achieving almost ideal scaling and many-
fold speedup over serial implementations. We are currently working on KNL
“white boxes” (pre-release hardware) and we will include those results and nec-
essary OpenMP optimizations in the final paper as allowed under our NDA with
Intel. (Expected release is before the final paper, if accepted, is due.)

12 Meng, Z., Koniges, A., et al

6 Acknowledgments

This work was supported by NSF grants DMS-1417674 and DMS-1045536 and
AFOSR MURI grant FA9550-10-1-0569. We would like to thank Dr. Da Kuang
for his suggestions on optimizing the serial codes. This work was also supported
by U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This
research used resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

1. Meng, Z., Merkurjev, E., Koniges, A., Bertozzi, A.L.: Hyperspectral Video Analysis Using

Graph Clustering Methods. Image Processing On Line, submitted

2. Stoer, M., Wagner, F.: A simple min-cut algorithm. Journal of the ACM (JACM) 44.4 :

585-591 (1997)

3. Szlam, A., Bresson, X.: A total variation-based graph clustering algorithm for cheeger ratio

cuts. UCLA CAM Report : 09-68 (2009)

4. Bertozzi, A.L., Flenner A.:Diffuse Interface Models on Graphs for Classification of High

Dimensional Data. SIAM Review, 58(2), pp. 293-328 (2016)

5. Chung, F.: Spectral graph theory. Vol. 92. American Mathematical Soc., (1997)

6. Von Luxburg, U.: A tutorial on spectral clustering. Statistics and computing 17.4: 395-416

(2007)

7. Van Gennip, Y., Bertozzi, A. L. Gamma-convergence of graph Ginzburg-Landau function-

als. Advances in Differential Equations 17.11/12: 1115-1180 (2012)

8. Bertozzi, A.L., Flenner, A.: Diffuse interface models on graphs for classification of high

dimensional data. Multiscale Modeling & Simulation 10.3: 1090-1118 (2012)

9. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nyström

method. Pattern Analysis and Machine Intelligence, IEEE Transactions on 26.2: 214-225

(2004)

10. Merkurjev, E. and Kostic, T., Bertozzi, A.L.: An MBO scheme on graphs for classification

and image processing. SIAM Journal on Imaging Sciences 6.4: 1903-1930 (2013)

11. Hu, H., Sunu, J., Bertozzi, A.L.: Multi-class graph Mumford-Shah model for plume de-

tection using the MBO scheme. Energy Minimization Methods in Computer Vision and

Pattern Recognition. Springer International Publishing (2015)

12. Demmel, J.W.: Applied numerical linear algebra. Siam (1997)

13. Broadwater, J. B., Limsui, D., Carr, A. K.: A primer for chemical plume detection using

LWIR sensors. Technical Paper, National Security Technology Department, Las Vegas, NV

(2011)

14. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance

model for multicore architectures. Communications of the ACM 52.4: 65-76 (2009)

15. Roofline Toolkit: https://bitbucket.org/berkeleylab/cs-roofline-toolkit

16. Intel Software Development Emulator: https://software.intel.com/en-us/articles/intel-

software-development-emulator

17. Doug Doerfler, Understanding Application Data Movement Characteristics using Intel

VTune Amplifier and Software Development Emulator tools, Intel Xeon Phi User Group

(IXPUG) (2015)

18. Intel VTune Official Website: https://software.intel.com/en-us/intel-vtune-amplifier-xe

